LECON N° 23 :

Droites et plans dans I'espace. Positions
relatives; plans contenant une droite
donnée.

Pré-requis:

— Espaces vectoriels de dimensidpt 3, propriétés;;
— Vecteurs et colinéarité de deux vecteurs;;

— Résolution de systemes linéaires.

Soienté’ I'espace affine de dimensichet E I'espace vectoriel associé. est rapporté a un repere ortho-
normé direc(0,,,k) = %.

23.1 Droites et plans de I'espace

23.1.1 Définition

Définition 1 : On appelle droite toute partie 2 de & telle qu'il existe A € & et i # 0 vérifiant

2={Mec&|IAER : AM = Xii}.

Onnote alorsZ = Z(A, @) et est appelévecteur directeurde 2.

Remar que 1 : Une droite est déterminée par la donnée de deux points distinet3.

Définition 2 : On appelle plan toute partie &2 C & telle qu'il existe A € & et deux vecteursu, v
linéairement indépendants vérifiant

P={M e &|3F(\pn) €eR?® : AM = \i + pv}.

On note alors & = #(A, 4, ¥) etu, ¥ sont appelésvecteurs directeursle 2.

Remar que 2 : Un plan est déterminé par la donnée de trois points non alignés, ou dlaped@sarque précédente,
par un point4 et une droite ne contenant pds

23.1.2 Représentation paramétrique
SoientZ (A, 1) et (A, u, V) avecA(a, b, c), (o, B,7),0(c’, 5,7"). Alors :
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M(z,y,2) € 2 M(z,y,2) € P
—_— . e . - 5 — .z
&AM, colinéaires & (AM,u,7) liee
—— ——
< FNER|AM =\ < ANpeR|AM = i + pv
T =a+ A\ r=a+ A+ pa’
< AANER| K y=b+ 23 & ANpeER| L y=b+ A0+ uf
z=c+ \y. z=c+ M+ wy.

Ce systeme est appekprésentation paramétrique de (resp.£?).

23.1.3 Equations cartésiennes d’un plan

Théoréme 1 : Soit #(A,ud,v) un plan avec A(a,b,c),i(a,3,7),9(a’,0',v"). Il existe
(p,q,7,s) € R* avec(p, q,r) # (0,0,0) tel que

M(xz,y,z) € ¥ << pr+qy+rz—+s=0.

Réciproquement, si(p, q,r,s) € R* avec(p,q,r) # (0,0,0), alors {M (x,y,z) € & | px +
qy + rz + s = 0} estun plan deé&.

démonstration: Notons déja, par exemple, gies non colinéaires entraina’3 — o3’ # 0. De plus,
il existe\, 4 € R tels que :

. r—a=da+pa (L)
Mew %22 )y b=28+u8 (L)
z—c=Xy+puy  (Ls)
Bz —a) —aly —b) = u(d'B—apf) (L}) ( Ly = BL1 — aLs )
“ { Wy —b) = Bz—c) =p(By— ) (Lh) N\ Lh =Ly — BLy
s (B8 B —a)—aly—b) —('B-ab)(v(y —b) - Bz —¢)) =0
(en faisant(3'y — 8y')L} — (¢/8 — af')LY)
& pr+qyt+rz+s=0,

avec
p = B(Bv-p6Y),
¢ = v('B—apf)—alfy—-57),
r = Blaf —dp)et

s = (87— 07)(ba—apf)— (o' —af)(ch —b).

De plus,(p,q,r) # (0,0,0). Pour la réciproque, on posg, ¢, r, s comme trouvé (et qui vérifient alors
(p,q,7) # (0,0,0)), et on remonte les lignes jusqud € 2. [ |

\Définition 3:Léquation px + qy + rz + s = 0 est appeléedquation cartésiennele .

Remar que 3 : Nous verrons plus loin (23.2.1) que I'équation cartésienne d’un plast p&s unique.
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23.2 Positions relatives. ..

23.2.1 ... de deux plans

&. Alors :

) =2 <« 3FJkeR*|(p,q,r,s)=k(pq,rs);

(i) NP’ =0 < JkeR*|(@,qd,r")=Ek(p,q,r)ets’ #ks;
(i) INI’'=92 << (p,q,r)et(p,q,r)non proportionnels.

Proposition 1: Soient? : px +qy+rz+s=0et ¥ : p’x + q'y +r'z + s’ = 0 deux plans de

Voici les illustrations correspondants a chacun de ces tas :

e it =7
P =P “ g
L7
()2 =2 (i) Nz =0 (iy 2N =9

démonstration: On a déja que

pr+qy+rz+s=0

/
M(z,y,z) € NP {p’:r—i—q’y—i—r’z—i—s'zo ()

Supposong # 0. Alors (S) se transforme facilement en

(s : pr+qy+rz+s=0
"l ywH+Bz+0=0,

avecB =rp —1r'p,y=p¢ —p'qetd = ps’ —p's.

Supposons3 = v = 0, et posong’ = kp. Alors

:O 'I"/ :’I"/ ’r'/:k’r
{5 0 (:){ quzq];’ (:){ q =kq & @ d, ) = kp,q,7).

Supposons3 = v = § = 0: alors on montre de maniére analogue que
W, d,r's") = k(p,q,7,5).

Distinguons alors plusieurs cas, s'aidant de ces deux résultats :
- Siy # 0 (par exemple, o # 0), alors (S’) (et donc(S)) admet une solution donnée par
sy — &' ro — ! s —ds r— o
_ 5P p + p p q q + q q

2=z, Y= z et z= Z,
Y v Y v

doncZ N &’ est la droite passant par le point

<QS’ —q's sp' —s'p 0)
’Y ) ’y M

et de vecteur directeur(a, 3,7), o« = qr’ — ¢'r et 3, déja définies.
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-SiB=~v=0etd #0, alors (p/,¢,r’) et (p,q,r) sont proportionnels, mais pa®’,¢,r’,s") et
(p,q,r,s), donc il existe\, u distincts et non nuls tels que’, ¢’, 7, s") = (Ap, A\g, Ar, us). Dans
le systéméS), on trouve alors que

As =0 s£Z0
{,us:O S A=u=0,

ce qui est impossible. Par ailleurs, si= 0, on aura automatiquement qué= us = 0, contredi-
sant le fait qugp’, ¢/, ', s’) et(p, ¢, 7, s) ne sont pas proportionnels. On en déduit alors ¢d¢
n’admet pas de solution, c’est-a-dir# N &’ = .

-SiB=~=68=0, alors(p/,¢,r',s') et(p, q,r, s) sont proportionnels, de sorte q@&) se réduise
ala seule équatiopz + qy + rz + s = 0, et on en déduit que? = &',

Puisque tous les cas sont envisagés, ces implications sont des équegadeiie résultat annoncé s'en

déduit. m

Définition 4 : Dans le cas (ii), on dit que&? et &’ sont strictement parallélesPour (i) et (ii), on note
P P

Remar que 4 : Le cas (i) montre que I'équation cartésienne d’'un plan n’est unique ape#ficient mutiplicatif
pres.

23.2.2 ...dune droite et d’'un plan

Proposition 2 : Soient%? : px + qy + rz + s = 0 un plan et ¥ la droite dont la représentation
paramétrique estx = a + Aa, y = b+ A3 etz = ¢ + A~. Alors

)C?Y < pa+qB+ry=0etpa+qgb+rc+s=0;
i) 9N =90 << pa+qgB8+ry=0etpa+qgb+rc+s#0;
(i) 9Nz ={1I}) < pa+qB+ry#D0.

Voici les illustrations correspondants a chacun de ces tas :

A(a,gb7 c) 9 A(a,.&c)
A(a, b, c) \
y \@ % 7 I \é
()7 (i) 72N =2 (i) 2N’ = {1}

démonstration: On a déja que

M(z,y,2) e 2NP < pla+da)+qb+A3)+r(c+MA\y)+s=0
& Mpa+qgB+ry)+ (pa+qgb+rc+s)=0.

De plus, notons que

pa+qgB+ry=0 <& ﬁ(a,ﬁ,y)éﬁ s 9 ) 2.
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() 2CcP <) Pet(a,bc) (€ 2)e P =<pa+qB+ry=0etpa+qgb+rc+s=0.
(i) 9NnP =09 ) Pet(a,bc) ¢ P < pa+qB+ry=0etpa+qgb+rc+s#0.
(i) 2NZ ={I} & pa+qB+ry+#0,

d’ou le résultat annoncé. [ |

23.2.3 ... de deux droites

Proposition 3 : SoientZ et 2’ deux droites de&’. Alors soit
(i) 2 =9;
(i) 2N = {1} < 2 et sontcoplanaireset? Y 7';

N 2 et 2’ coplanaires et || 7',
ou % et2’'noncoplanaires etz X 7'.

(i) 2N =

Voici les illustrations correspondants a chacun de ces tas :

derriere,
I \@/ ou /
O = VSR

()2 =2 (i) 202 = {I} (i) 2N 2 = @

démonstration: Le cas (i) est évident puisque deux droites ont tout a fait le droit d’égeriémes!
Supposons alors gu’elles sont distinctes. Considérons le gfadéfini par 2 et un pointA’ de 2’
n'appartenant pas &. Soit & contient un autre point d&’, et donc?’ C £, c'est-a-dire% et 7’
coplanaires. L'intersection ou le parallélisme se déduit alors de la positee# @t 2’ dans#?. Soit %
ne contient pas d’autre point d&’, et dans ce casy7 et 2’ ne sont pas coplanaires et doadortiori
non paralléles (sinon elles seraient justement coplanaires). [ |

23.3 Plans contenant une droite donnée

D’apres la proposition 1, toute droite est intersectione@dlans non paralleles. Soient alé7sine droite
donnée et”, 2 non paralléles tels qu&? N2 = 2. NotonsP(z,y, z) = 0 etQ(x,y, z) = 0 des équations
cartésiennes respectives geet 2, aussi notée® (M) etQ(M) siM(x,y, z) € &.

Définition 5 : On appelle faisceau de plangngendré parZ I'ensemble des plans contenan®. On le
note.% .

Remar que 5 : D’aprés notre petite introduction, on a alo¥, 2 € % 4.
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Théoreme 2 :.%, = F', ou F désigne I'ensemble des plans dont une équation cartésienest combi-
naison linéaire de celles de” et 2.

démonstration: On va montrer la double inclusion :

"C": SoitY € F4 aveck # £, 2. Alors il existeM € & telqueM ¢ &, 2etM € X (avec
2, cela détermine entiéeremehl). En posant\ = Q(M) ety = —P(M), alors le planII :
AP + u@Q = 0 contientM (car \P(M) + uQ(M) = Q(M)P(M) — P(M)Q(M) = 0) etZ
(carVAe 2,Aec N2« P(A) =Q(A) =0= AP(A)+ pnQ(A) =0= A eIl donc
2 c1I),douX =1I € F etfinalement%, C F.

"D": Soitll € F. AlorsII contient en particulier? et 2, donc aussiz, doncll € %4 et par
conséquentF’ C F4.

Le résultat est ainsi démontré. |

Remar que 6 : Si & et 2 sont paralleles, alors I'ensemble définit ce que I'on appelle léisceau de plans
paralleles 422 et 2, qui est 'ensemble des plans paralléles?aet 2 (la démonstration s’effectue a l'aide de la
proposition 1, on la laissera en exercice).



