
LEÇON N˚ 30 :

Le cercle. Positions relatives d’une droite
et d’un cercle, de deux cercle. Point de vue

géométrique et point de vue analytique.
Lien entre les deux points de vue.

Pré-requis :
– Médiatrices, symétries : défintions et propriétés ;
– Théorème de Pythagore, d’Al-Kashi ;
– Produit scalaire, distance et projeté orthogonal.

On se place dans le plan affine euclidienP.

30.1 Le cercle

30.1.1 Définition et propriétés

Définition 1 :
⋄ SoientO ∈ P et r un réel positif. On appellecercle de centreO et de rayonr, et l’on note C (0, r)

l’ensemble des points deP à distancer deO.
⋄ Soient C (O, r) un cercle, etM,M ′ ∈ C . Le segment[OM ] est appelérayon du cercleC . Si O ∈

[MM ′], alors le segment[MM ′] est appelédiamètre du cercleC .

Proposition 1 : Si ABC est un triangle non aplati, il existe un unique cercle passant par ces trois
points, dont le centre est le point d’intersection des troismédiatrices.

démonstration: Par définition, le centre se trouve à égale distance des trois points, donc sur les trois
médiatrices. Il ne reste donc plus qu’à montrer qu’elles sont concourantes : deux d’entre elles le sont
forcément en un pointO qui vérifie donc (par exemple)OA = OB etOB = OC, donc aussiOA = OC,
etO se trouve donc sur la troisième médiatrice. �

Conséquence: Le centre et le rayon qui déterminent un cercle sont uniques.
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Proposition 2 :
(i) Tout diamètre d’un cercle en est axe de symétrie ;
(ii) Le centre d’un cercle en est centre de symétrie.

démonstration:
(i) Soit C (O, r) un cercle contenant un pointM . Soient[AB] un diamètre de ce cercle. On construit

le pointM ′, image deM par la symétrie d’axe(AB). Montrons queM ′ ∈ C . NotonsH le projeté
orthogonal deM (donc aussi deM ′) sur [AB], de sorte que les trianglesOHM et OHM ′ soient
rectangles enH. Puisque[OH] est un côté commun, etHM = HM ′ par définition de la symétrie
axiale, le théorème de Pythagore nous assure queOM = OM ′ = r, doncM ′ ∈ C .

(ii) Soit M ′′ le symétrique deM par rapport àO, selon la construction ci-dessus. AlorsOM = OM ′′,
doncM ′′ ∈ C .

�

Théorème 1 (équation cartésienne) : Dans un repère orthonormé où O a pour coordonnées(a, b),
l’équation d’un cercle C (0, r) est, pour tout point M ∈ C de coordonnées(x, y),

(x − a)2 + (y − b)2 = r2.

Réciproquement, siα, β, γ ∈ R tels queα2 + β2 − γ > 0, alors l’ensemble{M(x, y) ∈ P | x2 +
y2 − 2αx − 2βy + γ = 0} est le cercle de centreΩ(α, β) et de rayonr =

√

α2 + β2 − γ.

démonstration: SoientM(x, y) ∈ P et H le projeté orthogonal deM sur la parallèle à l’axe des
abscisses passant parO. Alors le triangleOHM est rectangle enH. MaisOM = r, OH = |x − a| et
MH = |y − a|, donc d’après le théorème de Pythagore, on a bien

(x − a)2 + (y − b)2 = r2.

Réciproquement,{M(x, y) ∈ P | x2 + y2 − 2αx − 2βy + γ = 0} = {M(x, y) ∈ P | (x −
a)2 + (y − b)2 = α2 + β2 − γ}. SoientO(α, β) et H un point deP tel queOH = |x − α| sur la
droite parallèle à l’axe des abscisses passant parO et tel queOH = |y − β| sur la droite parallèle
à l’axe des ordonnées passant parO. Par construction, le triangleOHM est rectangle enH, d’où
OM =

√

(x − α)2 + (y − β)2 =
√

α2 + β2 − γ par hypothèse. Par définition, cet ensemble est donc
le cercle de centreO(α, β) et de rayon

√

α2 + β2 − γ. �

Proposition 3 : SoientA, B deux points distincts deP. L’ensemble des pointsM de P tels que le
triangle AMB soit rectangle enM est le cercle de diamètre[AB] privé de A et deB.

démonstration: SoitM ∈ P tel que le triangleAMB soit rectangle enM . SiN désigne le symétrique
deM par rapport au milieu de[AB], on montre facilement que le quadrilatèreAMBN est rectangle. En
effet, notonss cette symétrie. Alorss(A) = B et s(M) = N impliquent(AM) // (BN). Or (AM) ⊥
(BM), donc(BN) ⊥ (BM). De plus, par conservation des angles géométriques,s(ÂMB) = B̂NA

est un angle droit.AMBN possède donc trois angles droits : c’est un rectangle. Ses diagonales se
coupent donc en leur milieuO, de sorte que (en particulier),OA = OB = OM , doncM est sur le
cercle de rayonAB

2
, c’est-à-dire le cercle de diamètre[AB]. �
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30.2 Positions relatives. . .

30.2.1 . . .d’un cercle et d’une droite

Théorème 2 : SoientC (O, r) un cercle,D une droite etH le projeté orthogonal deO sur D . Alors :

(i) C et D ont 2 intersections si et seulement siOH < r ;

(i) C et D ont 1 intersection si et seulement siOH = r ;

(i) C et D n’ont pas d’intersection si et seulement siOH > r.

démonstration (analytique): Choisissons un repère orthonormé tel queC et D admettent respec-
tivement pour équationsx2 + y2 = r2 et x = d (ce choix est possible en prenant le centre du cercle
pour origine, la parallèle àD passant ce centre pour axe des ordonnées et l’unité est définie parr). Les
ordonnées des éventuels points d’intersections deC et D sont données pary2 = r2 − d2, d’où 0, 1 ou
2 intersections selon qued > r, d = r oud < r. �

Définition 2 : Dans le cas (i),C et D sont dits sécants. Dans (ii), ils sont ditstangentset dans (iii), ils
sont ditsextérieurs.

Corollaire 1 : Il existe une unique droite tangente passant par un point M d’un cercle : c’est la
perpendiculaire à (OM) passant parM .

démonstration: Soit un repère orthonormé d’origineO tel que(OM) soit l’axe des abscisses. Alors
C : x2 + y2 = r2 et d’après le théorème précédent, la seule droiteD telle queD etC soient tangentes
est la droite d’équationx = r. �

30.2.2 . . .de deux cercles

Le paragraphe précédent assure que l’intersection de deux cercles comporte au plus deux points. On se
donne deux cerclesC (O, r) etC ′(O′, r′) distincts et l’on noted = OO′.

Théorème 3 :

(i) C deC ′ ont 2 intersections si et seulement si|r − r′| < d < r + r′ ;

(ii) C deC ′ ont 1 intersection si et seulement sid = r + r′ ou d = |r − r′| ;

(iii) C deC ′ n’ont pas d’intersection si et seulement sir + r′ < d ou d < |r − r′|.

démonstration: Nous aurons besoin des deux lemmes suivants avant de démontrer à proprement parler
ce théorème.

Lemme 1: SoientA, B ∈ P deux points distincts, etM ∈ P. Alors

1. AM + MB = AB ⇔ M ∈ [AB] ;

2. |AB − AM | = BM ouBM = AB + AM ⇔ M ∈ (AB)\[AB].
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démonstration: Il suffit de faire un dessin pour s’en convaincre :

A B
−−−−−−−−−−
︸ ︷︷ ︸

MB−MA=AB

| − − −−−−−−−−
︸ ︷︷ ︸

MA+MB=AB

| − − −−−−−−−−
︸ ︷︷ ︸

MA−MB=AB

�

Lemme 2: Soienta, b, c ∈ R∗

+. On a alors équivalence entre :

1. Il existe un triangleABC de longueurs de côtésa, b et c ;

2.







a 6 b + c
b 6 a + c
c 6 a + b ;

3. |b − c| 6 a 6 b + c.
b

A
b

B

b
C

︸ ︷︷ ︸

b2+c2−a2

2bc

α

c

a

b

démonstration:

2 ⇔ 3 : trivial (calculs)

1 ⇒ 2 : Une distance vérifiant l’axiome de l’inégalité triangulaire, il n’y a rien à démon-
trer (en effet, si l’on est seulement muni d’un produit scalaire, étantdans un espace
euclidien, celui-ci induit une distance qui vérifiera la propriété de l’inégalité triangu-
laire).

2 ⇒ 1 (figure ci-dessus) : On choisitA, B tels queAB = c. L’hypothèse nous assure,
après quelques calculs, que

b2 + c2 − a2

2bc
∈ [−1, 1],

et il existe donc un réelα tel que (grâce à la structure deR)

b2 + c2 − a2

2bc
= cos α.

Par le théorème d’Al-Kashi, il existe alors un anglêA de mesureα. Soit alorsC le
point de la demi-droite issue deA tel queB̂AC = α etAC = b. On vérifie enfin assez
facilement queBC = a. �

C et C ′ sont sécants enM et M ′ si et seulement si l’on peut construire
une triangleOMO′ tel queOM = r, O′M = r′ et OO′ = d, donc
(lemme 2) si et seulement si|r − r′| 6 d 6 r + r′.

b

O b

O′

bc
M

bc

M ′

(iii) D’où, si d > r + r′ oud < |r − r′|, alorsC ∩ C ′ = ∅.

(ii) Montrons que les propositions suivantes sont équivalents :

a. C etC ′ n’ont qu’une intersection

b. M ∈ (OO′)

c. d = |r − r′| oud = r + r′.

"a⇒b" : La symétrie d’axe(OO′) laisse invariants les deux cercles, il en est de même pour leur
intersection qui se trouve donc sur l’axe.
"b⇒c" : Le lemme 1 nous apporte alors les relationsd = |r − r′| ou d = r + r′ en distinguant
les casM ∈ (OO′)\[OO′] etM ∈ [OO′].
"c⇒a" : Enfin, si l’on supposeOO′ = r + r′ et en considérantM le point de[OO′] tel que
OM = r, on aO′M = r′ etM ∈ C ∩C ′. En supposant de plusqueM ′ soit une autre intersection
deC etC ′, le sens direct du lemme 1 (i) nous assure queM ′ ∈ [OO′], doncM = M ′. On montre
de même queM = M ′ en supposant queOO′ = |r − r′|.
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(i) D’après ce qui précède le cas|r − r′| 6 d 6 r + r′ donne deux intersections, et seul les cas
d = r+r′ etd = |r−r′| apportent deux intersections communes, donc lorsque|r−r′| < d < r+r′,
C etC ′ se coupent selon deux intersections distinctes. �

30.3 Points de vue géométrique et analytique. Liens

Dans ce paragraphe, on munitP d’un repère orthonormé, et on considère le cercle{M ∈ P | x2 + y2 −
2ax − 2bx − c = 0} de centreO(a, b) et de rayonr =

√
a2 + b2 − c (théorème 1).

30.3.1 Puissance d’un point par rapport à un cercle

Théorème 4 : SoitM ∈ P, et D une droite passant parM coupantC en deux pointsP et P ′. Alors
le nombreMP · MP ′ = MO2 − r2 est indépendant deD .

démonstration: SoitH le projeté orthogonal deO surD , de sorte queHP ′ = −HP . Alors

MP · MP ′ = (MH + HP )(MH + HP ′) = (MH + HP )(MH − HP )

= MH2 − HP 2 = MH2 − (r2 − OH2) = MO2 − r2.

�

Définition 3 : On note ce nombre indépendantPC (M) = MO2 − r2 et on l’appellepuissance deM par
rapport àC .

Remarque 1 : Si P = P ′ (autrement dit, si la droiteD passant parM est tangente àC ), alors le triangleMOP

est rectangle enO, de sorte quePC (M) = MO2 − r2 = MP 2 par le théorème de Pythagore.

Proposition 4 : SoitM(x, y) ∈ P. Alors PC (M) = x2 + y2 − 2ax − 2bx + c.

démonstration:

b
Ω

b

M

×
P

P ′

D

×
H

r
r

bc

bc

On a :

PC (M) = MO2 − r2 = (x − a)2 + (y − b)2 − r2

= x2 + y2 − 2ax − 2by + a2 − b2 − (a2 + b2 − c)

= x2 + y2 − 2ax − 2by + c.

�
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Conséquence:

⋄ L’ensemble des pointsM du plan ayant la même puissance par rapport à un cercleC
(
O(a, b), r

)
est un

cercle de centreO et de rayonR =
√

a2 + b2 − c + PC (M), oùPC (M) est une constante ;
⋄ Si PC (M) = 0, alors cet ensemble est exactementC .

30.3.2 Axe radial de deux cercles non concentriques, centre radial

On se donne un autre cercleC ′(O′, R) de centreO′(a′, b′) distinct deO, et d’équationx2 + y2 − 2a′x −
2b′y + c′ = 0.

Théorème 5 : L’ensemble des pointsM du plan tels que PC (M) = PC ′(M) est une droite D

perpendiculaire à (OO′).

démonstration: SoitH le projeté orthogonal deM sur (OO′). Alors :

PC (M) = PC ′(M) ⇔ MO2 − r2 = MO′2 − R2 ⇔ MO2 − MO′2 = r2 − R2

⇔ OH2 + HM2 − (O′H2 + HM2) = r2 − R2

⇔ (OH + O′H)(OH − O′H) = r2 − R2

⇔ (OH + O′O + OH) · OO′ = r2 − R2

⇔ OH =
r2 − R2

2 · OO′
+

OO′

2
,

ce qui détermineH de manière unique, donc l’ensemble recherché est bien une droite perpendiculaire à
(OO′). �

Conséquence:
⋄ Si C ∩ C ′ = {A,B} avecA 6= B, alorsD = (AB) ;
⋄ Si C ∩ C ′ = {A}, alorsD est la tangente enA commune àC etC ′ ;
⋄ Si C ∩ C ′ = ∅, alorsD est extérieure aux deux cercles. En effet, siD ∩ C = ∅, il existerait au moins

un point intérieur àC qui aurait une puissance négative par rapport à ce cercleC et positive par rapport
au cercleC ′ (au sens strict), ce qui est absurde.

Théorème 6 : SiC ′′ est un cercle dont le centreO′′ n’appartient pas à (OO′), alors les trois axes ra-
dicaux possibles sont concourants en un point ayant la même puissance par rapport aux trois cercles.

Une illustration se trouve ci-dessous, après la conséquence donnant un moyen facile de construire chaque
axe radical.

démonstration: NotonsD (resp.D ′, D ′′) l’axe radical des cerclesC et C ′ (resp.C et C ′′, C ′ et
C ′′). NotonsI le point d’intersection deD et D ′ (il existe, car les trois cercles n’ont pas leurs centres
alignés). Par définition, ce point admet la même puissance par rapportà C et C ′′ (car surD) et àC ′

(car surD ′). En particulier, il a la même puissance par rapport aux cercleC ′ etC ′′, doncI ∈ D ′′. �
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Définition 5 : Ce point est appelécentre radicaldes trois cerclesC , C ′ et C ′′.

Conséquence: On peut construire l’axe radical de deux cerclesC et C ′ disjoints en ajoutant un cercleC ′

sécant àC etC ′, et dont le centre n’est pas sur la droite formée des centres des cerclesC etC ′.

Le schéma ci-dessous illustre le théorème 6. Pour la construction des axes radicaux, seule celle deD a été
mise en évidence grâce à la conséquence ci-dessus : on a construit un troisième cercle (que l’on nomme
C) (rouge) vérifiant les conditions. Alors l’axe radical des cercleC et C ′′ est la droite joignant les deux
intersections de ces cercles. En particulier, le pointI ′ sur cette droite admet la même puissance par rapport
à ces deux cercles. De même, l’axe radical des cerclesC etC est la droite joignant les intersections de ces
deux droites. PuisqueI ′ est dessus, il a la même puissance par rapport à ces deux cercles.

On en déduit quePC (I ′) = PC ′′(I ′), doncI ′ est sur l’axe radical des cerclesC etC ′′. Cet axe doit (d’après
le théorème 5) être perpendiculaire à(OO′), ce qui nous permet de le dessiner.

On construit les deux autres axes radicaux de la même manière, et le point d’intersection est donc le centre
radical recherché :

b

O

b
O′

b

O′′

I ′

bc

I

C ′′

C C ′

D ′′

D

D ′

30.3.3 Faisceaux de cercles

Soientf(x, y) = 0 etg(x, y) = 0 les équations de deux cerclesC etC ′ non concentriques.

Définition 6 : On appelle faisceau de cercles engendré parC et C ′ l’ensemble de cercles (et droites)
dont une équation estλ f(x, y) + µ g(x, y) = 0, avec(λ, µ) ∈ (R2)∗.


