LECON N° 30 :

Le cercle. Positions relatives d’'une droite
et d’'un cercle, de deux cercle. Point de vue
geometrique et point de vue analytique.
Lien entre les deux points de vue.

Pré-requis:

— Médiatrices, symétries : défintions et propriétés;;
— Théoréme de Pythagore, d’Al-Kashi;

— Produit scalaire, distance et projeté orthogonal.

On se place dans le plan affine euclidi¢h

30.1 Le cercle

30.1.1 Définition et propriétés

Définition 1 :

o SoientO € & etr un réel positif. On appellecercle de centre) et de rayonr, et I'on note (0, r)
I'ensemble des points de a distancer de O.

o Soient% (O, r) un cercle, etM, M’ € €. Le segment|OM] est appelérayon du cercle?. Si O €
[M M'], alors le segmen{M M’] est appelédiameétre du cercles’.

Proposition 1 : Si ABC est un triangle non aplati, il existe un unique cercle passdrpar ces trois
points, dont le centre est le point d’'intersection des troisnédiatrices.

démonstration: Par définition, le centre se trouve a égale distance des trois points, dohesstiois
médiatrices. Il ne reste donc plus qu’a montrer qu’elles sont corarges : deux d’entre elles le sont
forcément en un poir® qui vérifie donc (par exemplé)A = OB etOB = OC, doncaussDA = OC,
et O se trouve donc sur la troisieme médiatrice. [ |

Conséquencele centre et le rayon qui déterminent un cercle sont uniques
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Proposition 2 :
(i) Tout diamétre d’'un cercle en est axe de symétrie ;
(i) Le centre d’'un cercle en est centre de symétrie.

démonstration:

(i) Soit#(O,r) un cercle contenant un poidt/. Soient{AB] un diameétre de ce cercle. On construit
le point M’, image deM par la symétrie d’axé AB). Montrons quel’ € . NotonsH le projeté
orthogonal de)M (donc aussi de\!’) sur [AB], de sorte que les triangle@ H M et OH M’ soient
rectangles erfl. Puisque[O H] est un c6té commun, &M = HM' par définition de la symétrie
axiale, le théoréme de Pythagore nous assure@i¢ = OM' = r, doncM’ € €.

(i) Soit M" le symétrique dé/ par rapport a0, selon la construction ci-dessus. Ald@ps\/ = OM”,
doncM” € €.

[

Théoréme 1 (équation cartésienne) : Dans un repére orthonorénou O a pour coordonnées(a, b),
I'équation d’un cercle € (0, ) est, pour tout point M € % de coordonnéegz, y),

(z—a)*+ (y —b)* =7

Réciproquement, sia, 3, v € R tels quea? 4+ 32 —~ > 0, alors 'ensemble{ M (z,y) € & | %> +
y? — 2ax — 203y + v = 0} est le cercle de centr&2(a, 3) et de rayonr = /a2 + 32 — ~.

démonstration: SoientM (x,y) € & et H le projeté orthogonal dé/ sur la parallele a I'axe des
abscisses passant pa&r. Alors le triangleO H M est rectangle edl. MaisOM = r, OH = |x — a| et
MH = |y — a|, donc d’apreés le théoréme de Pythagore, on a bien

(x—a)?+ (y—b)?=r2

Réciproquement{ M (z,y) € & | 2® + y> — 2ax — 2By +v = 0} = {M(z,y) € Z | (z —
a)? + (y — b)? = o + 32 — ~}. SoientO(«, B) et H un point deZ tel queOH = |z — «f sur la
droite paralléle & I'axe des abscisses passant Paet tel queOH = |y — 3| sur la droite paralléle
a l'axe des ordonnées passant par Par construction, le triangle) H M est rectangle erf{, d’ou
OM = \/(z — a)? + (y — B)? = /a2 + 32 — v par hypothése. Par définition, cet ensemble est donc

le cercle de centr®(«, 3) et de rayon/a? + 3% — ~. [

Proposition 3 : Soient A, B deux points distincts deZ. L'ensemble des pointsM de & tels que l¢g
triangle AM B soit rectangle enM est le cercle de diamétrd A B] privé de A et de B.

démonstration SoitM € £ tel que le triangled M B soit rectangle er/. SiN désigne le symétrique
de M par rapport au milieu déA B], on montre facilement que le quadrilateté/ BN est rectangle. En
effet, notons: cette symétrie. Alors(A) = B ets(M) = N impliquent(AM) // (BN). Or (AM) L
(BM), donc(BN) L (BM). De plus, par conservation des angles géométriqm@m) = BNA

est un angle droitAM BN posséde donc trois angles droits : c’est un rectangle. Ses diagonales s
coupent donc en leur milie@, de sorte que (en particuliery)A = OB = OM, doncM est sur le

cercle de rayor’2, c’est-a-dire le cercle de diametfel B]. u
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30.2 Positions relatives. ..

30.2.1 ...d'un cercle et d’'une droite

Théoréme 2 : Soienté’ (O, r) un cercle, Z une droite et H le projeté orthogonal deO sur 2. Alors :
() € et Z ont 2 intersections si et seulementWH < r;
() ¢ et ont 1 intersection si et seulementDH = r;

() ¢ et Z n'ont pas d’intersection si et seulementsOH > r.

démonstration (analytique) Choisissons un repére orthonormé tel dgieet 2 admettent respec-
tivement pour équations? + y?> = r2 etz = d (ce choix est possible en prenant le centre du cercle
pour origine, la paralléle &7 passant ce centre pour axe des ordonnées et I'unité est définig.jags
ordonnées des éventuels points d’intersection®’de 2 sont données pay? = r? — d?, d'ot 0, 1 ou

2 intersections selon qué> r,d = r oud < r. [ |

Définition 2 : Dans le cas (i),% et 2 sont dits sécants Dans (i), ils sont ditstangentset dans (iii), ils
sont dits extérieurs

Corollaire 1 : Il existe une unique droite tangente passant pr un point M d’un cercle : c’est la
perpendiculaire & (O M) passant parM.

démonstration: Soit un repere orthonormé d’origin@ tel que(OM) soit I'axe des abscisses. Alors
¢ : 2% 4+ y? = r? et d’aprés le théoréme précédent, la seule dréiteelle queZ et ¢ soient tangentes
est la droite d’équation: = r. [ |

30.2.2 ...de deux cercles

Le paragraphe précédent assure que l'intersection de dgales comporte au plus deux points. On se
donne deux cercleg (O, r) et¢”’(O’, ") distincts et I'on notel = OO'.

Théoréme 3:
(i) € de%” ont 2 intersections si et seulement gir — r'| < d < r + r’;
(i) ¢ de®”’ ont 1 intersection si et seulementsd = r + v’ oud = |r — 7’|;
(i) ¥ de%’ n'ont pas d’intersection si et seulementsir 4+ r’ < doud < |r — 7/|.

démonstration Nous aurons besoin des deux lemmes suivants avant de démontprerpent parler
ce théoréeme.
Lemme 1: SoientA, B € &7 deux points distincts, e/ € &. Alors

1. AM+ MB=AB & M € [AB];

2. |AB— AM|=BMouBM = AB+ AM < M € (AB)\[AB].
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démonstration: Il suffit de faire un dessin pour s’en convaincre :

MB—-MA=AB MA+MB=AB MA—-MB=AB

Lemme 2: Soienta, b, c € R . On a alors équivalence entre :
1. Il existe un triangled BC' de longueurs de cotésb etc;

a<b+c
2. b<a+c
c<a+b;

3. b—c[<a<b+e

démonstration:

2 < 3 trivial (calculs)

1 = 2: Une distance vérifiant 'axiome de I'inégalité triangulaire, il N’y a rien a d#m
trer (en effet, si I'on est seulement muni d’un produit scalaire, étiamts un espace
euclidien, celui-ci induit une distance qui vérifiera la propriété de I'inégariangu-
laire).

2 = 1 (figure ci-dessus) : On choisitA, B tels queAB = c. L’hypothése nous assure,
aprés quelques calculs, que
b2 + % —a?
2bc
et il existe donc un réel tel que (grace a la structure dR)

€ [-1,1],

b2 + 2 —a?
2be

Par le théoreme d’Al-Kashi, il existe alors un angﬁede mesurex. Soit alorsC' le

point de la demi-droite issue dé tel queﬁ&?} = a et AC = b. On vérifie enfin assez
facilement queBC = a. O

— COos @.

¢ et¢’ sont sécants e/ et M’ si et seulement si I'on peut construire
une triangleOMO’ tel queOM = r, O'M = r’' et OO’ = d, donc
(lemme 2) si et seulement|si— /| < d < r + 7.

(i) Dou,sid>r+r" oud < |r—17/|,alors€NE" = 2.
(i) Montrons que les propositions suivantes sont équivalents :
a. ¢ et%’ n'ont qu'une intersection
b. M € (O0')
c.d=|r—7r'loud=r+r'.
"a=-b" : La symétrie d’axd O0’) laisse invariants les deux cercles, il en est de méme pour leur
intersection qui se trouve donc sur I'axe.
"b=-c" : Le lemme 1 nous apporte alors les relatiahs= | — /| oud = r + r/ en distinguant
les casM € (OO")\[OO'] etM € [O0].
"c=-a" : Enfin, si 'on suppos&® O’ = r + ' et en considérani/ le point de[OO’] tel que
OM =r,ona0'M =r'etM € €N%’. En supposant de plugie M’ soit une autre intersection

de% et¢”’, le sens direct du lemme 1 (i) nous assure gifec [OO'], doncM = M’. On montre
de méme qué/ = M’ en supposant queO’ = |r — r’|.
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(i) D’'apres ce qui précede le cgs — /| < d < r + ' donne deux intersections, et seul les cas
d = r+r' etd = |r—r'| apportent deux intersections communes, donc lorggue’ | < d < r+r’,
¢ et¢’ se coupent selon deux intersections distinctes. |

30.3 Points de vue geomeétrique et analytique. Liens

Dans ce paragraphe, on mu#t d’un repére orthonormé, et on considére le cefdle € & | 2% + y* —
2ax — 2bx — ¢ = 0} de centre)(a, b) et de rayon = v/a? + b? — c (théoréme 1).

30.3.1 Puissance d’un point par rapport a un cercle

Théoreme 4 : SoitM € &2, et ¥ une droite passant parM coupant% en deux pointsP et P’. Alors
le nombre M P - M P’ = MO? — r? estindépendant deZ.

démonstration. Soit H le projeté orthogonal d® sur 2, de sorte quéd P’ = —H P. Alors

MP-MP' = (MH+HP)(MH+ HP')=(MH+ HP)(MH — HP)
= MH?-HP?=MH?— (r* — OH?) = MO?* — 2.

Définition 3 : On note ce nombre indépendantP, (M) = M O? —r? et on I'appelle puissance dé\/ par
rapport a%’.

Remar que 1 :SiP = P’ (autrement dit, si la droit& passant pail/ est tangente &), alors le triangle\/ O P
est rectangle e®, de sorte qué®, (M) = MO? — r?> = M P? par le théoréme de Pythagore.

Proposition 4 : Soit M (z,y) € £. Alors P,(M) = z? + y*> — 2ax — 2bx + c.

démonstration:

= MO?*—r?=(z—a)*+ (y—b)* —r?
= 224 9% —2ax —2by +a® - b* — (> +b* — ¢)
22 +y? — 2az — 2by + c.
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Conséquence
o L'ensemble des pointd/ du plan ayant la méme puissance par rapport a un c@ér(ﬂb(a, b), r) est un

cercle de centré et de rayon? = /a2 + b> — c + P»(M), ol P,(M) est une constante ;
o SiPy(M) = 0, alors cet ensemble est exactentént

30.3.2 Axe radial de deux cercles non concentriques, centre radial

On se donne un autre cer&&(O’, R) de centreD’(d/, V') distinct deO, et d’équationz? + y* — 2a’zr —
20y + = 0.

Théoréme 5 : Lensemble des pointsM du plan tels que P, (M) = P, (M) est une droite
perpendiculaire a (OO’).

démonstration Soit H le projeté orthogonal dé/ sur (OO’). Alors :

Pg(M) = Pg(M) & MO?—r*=MO” - R* & MO®> - MO” =r* - R?

& OH?+ HM? — (O'H? + HM?) = r* — R?
& (OH+O'H)(OH —O'H) =r* — R?
& (OH+00+0H)-00" =r*— R?
2_p2 O
o oF-" 1 00
2-00 2
ce qui détermindd de maniére unique, donc I'ensemble recherché est bien une drojienuiculaire a
(00"). [
Conséquence

o SieNe ={A, B} avecA # B, alors? = (AB);

o SieNE = {A}, alorsZ est la tangente eA commune & et%”;

o SIENE = o, alorsZ est extérieure aux deux cercles. En effetysh ¢ = &, il existerait au moins
un point intérieur & qui aurait une puissance négative par rapport a ce céteepositive par rapport
au cercleg” (au sens strict), ce qui est absurde.

Théoréme 6 : Si%”” est un cercle dont le centreD” n’appartient pas a (OO’), alors les trois axes ra;
dicaux possibles sont concourants en un point ayant la mémeijgsance par rapport aux trois cercles

Une illustration se trouve ci-dessous, aprées la conségugmenant un moyen facile de construire chaque
axe radical.

démonstration: Notons2Z (resp.2’, ") 'axe radical des cercle’ et ¢’ (resp.€ et¢”, €' et
¢"). NotonsI le point d’intersection de7 et 2’ (il existe, car les trois cercles n’ont pas leurs centres
alignés). Par définition, ce point admet la méme puissance par ragpgret ¢ (car sur 2) et a%”
(car sur2’). En particulier, il a la méme puissance par rapport aux ceféteet4”’, doncl € 2”. R
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Définition 5 : Ce point est appelécentre radicaldes trois cercless’, ¢’ et €.

ConséquenceOn peut construire I'axe radical de deux cercegt ¢” disjoints en ajoutant un cerctg’
sécant & et%’, et dont le centre n’est pas sur la droite formée des centesatcless ets”.

Le schéma ci-dessous illustre le théoreme 6. Pour la catistnudes axes radicaux, seule celleda été
mise en évidence grace a la conséquence ci-dessus : on augamstroisieme cercle (que 'on nomme
C) (rouge) vérifiant les conditions. Alors I'axe radical desade C' et ¢ est la droite joignant les deux
intersections de ces cercles. En particulier, le p@isur cette droite admet la méme puissance par rapport
a ces deux cercles. De méme, I'axe radical des ceftless est la droite joignant les intersections de ces
deux droites. PuisquE est dessus, il a la méme puissance par rapport a ces deusscercl

On en déduit qué’, (I') = Py (1), doncl’ est sur I'axe radical des cerclegset¢”. Cet axe doit (d'aprés
le théoreme 5) étre perpendiculairé@0’), ce qui nous permet de le dessiner.

On construit les deux autres axes radicaux de la méme maetéegpoint d’intersection est donc le centre
radical recherché :

30.3.3 Faisceaux de cercles

Soientf(z,y) = 0 etg(z,y) = 0 les équations de deux cerclgset ¢’ non concentriques.

Définition 6 : On appelle faisceau de cercles engendré pért et ¢’ 'ensemble de cercles (et droites
dont une équation est\ f(z,y) + pg(x,y) = 0, avec(\, u) € (R?)*.

N




