LECON N° 74 :

Fonctions convexes d’'une variable réelle.
Applications.

Pré-requis:
— Convexité d'une partie d&?;
— Notions de continuité, dérivabilité (« normale », a gaucha dtoite).

Soit I = [a,b] un intervalle deR. On notel” l'intervalle I privé de ses bornes. On considére dans cette
lecon une fonctiory : I — R.

74.1 Fonctions convexes

Définition 1 : La fonction f est dite convexesi

Y (z,y) € I,V X € [0,1], f()\l +(1-— /\)y) <Af(z)+ (1= X) f(y).

Elle est diteconcavesi — f est convexe.

Interprétation graphique :

:IL, A+ (1-XNy Q

Exemples Les fonctionsy — 2, z — |x| sont convexes.

Remar ques 1:
1. Soientf etg convexes suf, etA > 0. Alors A\ f et f + g sont convexes sur.
2. Sif:R — R, alors pour tout réet, f|j_ [ €t f|z +o0[ CONVEXESA f CONVExe SURR.

\/\—/

X




Fonctions convexes

3. f estune fonction affine si et seulemenysist convexe et concave.

Théoreme 1 : f est convexe si et seulementsi’ = {(z,y) € R? | f(x) < y} estune partie convexe

deRZ2.

démonstration:

"=>": SoientM(z1,y1), N(x2,y2) € </, de sorte quef(z1) < y1 et f(z2) <

PuisqueT’ € [MN], il existe €
Alors

f convexe

fl@)=fQAzi+ 1 =Naa) < Af(x) + (1= A) flaz) (2) Ayt (=N y2 =

2. ONn note ces
deux inégalitég). Soit7T'(x,y) € [M N], on veut montrer qué’ € o7, c’est-a-diref(z) <
€

Y.

0,1 telquex = Az + (1 — N za ety = Ayp + (1 — ) ye.

f(y).

"<=": Soient(ai,az) € I?, M (ay, f(a1)),N(az, f(a2)). M,N € <, donc[MN] C < (car o/

est convexe), et par suite, pour tout [0, 1], ona
T(Aar+ (1= A)az, A f(a1) + (1 = A) flas)) € .
Cette appartenance s’écrit aussi
fhar+ (1= X)az) <A flar) + (1= N) flaz),

doncf est convexe.
Notons ques est appelé&pigrapheade f.

Théoréme 2 : Les trois propositions suivantes sont équivalees :
() f estconvexe;
(i) Pourtout (z,y,2) € I3telquex < y < =z,

f) = f@) _ ()= @) _ f() = () |

Yy—x N z—x N z—vy
(i) Pourtout xo € I, lafonction suivante est croissante :

Pxo - I\{wﬂ} — R
F@) = (o)

L — Io

démonstration:
(i) = (i): =z <y < zetfestconvexe, donc il existec [0, 1] tel que

y=Az+(1-XN)z
(¥ { F) < Af() + (1— 2 F(2).

Par suite, et puisqué — A # 0,0na

fly) = f@) OAf@)+ (1 =N f(z) = fl2)  (1=N(f(2) - f(z))

y— S Arx+(1-XNz—x (I=X)(z—x)

&) - @)

Z—X
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(£) donne aussi, puisque# 0,

{ x:%(y—(l—)\)z)
f@) = 5 (Fly) = (1= N) f(2)).

En procédent comme tout a I'heure, on obtient alors

f() = fl) _ J) =3(f@) -0 =N fGE) _ fz) = flu)
z—x z—3(y—(1=X)z) zZ—y

(ii) = (iii) : Soit(x,y,z0) € I tel query < x < y. Alors par hypothése,

f(z) — f(xo) < f(y) — f(=o)

~
T — g Y — Zo

Pao(T) = = ¢, (Y)-

De méme st < zp < y etz < y < zp. On en déduit que,,, est croissante suf\{zo}.
(i) = (i): Soient(z,y) € I*tel quer < y, A €]0,1[etzg = Ax + (1 — \)y € I. D’aprés (iii), et
en notantquer — 29 < 0,y —xg > 0ety —xz >0,0na:

f@) ~ () _ F ()~ f(ao)

P20 () < Puo(y) & T — o =X Y — 20
= (y —x0)(f(2) — f(x0)) = (x — z0)(f(y) — f(20))
< A(y )(f(x) = flzo)) = (A= 1)(y —2)(f(y) — f(0))
& MA@+ 1N Ffly) =AM =1=N)(~ f(z0))
S M)+ 1= f(y) = flzo) = fFAz+(1—N)y)

Remar que 2 :SilonnoteX (z, f(2)),Y (v, f(y)) etZ(z, f(z)), alors (i) traduit le fait que la pente de la droite
(XY) estinférieure a celle de¥ 7 ), elle-méme inférieure a celle & Z), comme le montre clairement l'illustration
ci-dessous :

74.2 Reésultats utiles

Théoréme 3: Sif : I — R est convexe, alors pour toute, € I°, f admet une dérivée a gauche/
et une deriveée a droitef’, f est continue surl’ et f’ £/, sont croissantes sud”.
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démonstration:
e Soitzy € I'. Pour tousr € |a, zo[ ety € ]zo, b], le théoréme 2 nous assure que, est croissante et
majorée sufja, xo[ par ¢, (y). Donc la limite & gauche en, de p,, existe et

IEIU’UI;_ Pro (35) - xggg_ W B f;(ajO)

On procéde de la méme maniére pour la dérivée a droite, et ces dautatésaménent directement la
continuité def surI”.

e Soitzg € I°. On a alors que pour tous € |a, zg| ety € |z, b[,

f(z) = f(xo) _ f(y) — f(x0)

< .
T — 20 Y — o

En passant & la limites( — 29~ ety — ™), on obtient l'inégalitéf; (zo) < f}(xo), notée(1). Soit
alorsx; € I tel quexg < z1. D’apres le point (i) du théoreme 2, on a pour tatitr |xg, 1],
f(@) = flwo) _ fler) = flxo) _ f(2) = fla1)
T — X = r1 — X0 = Tr — I
L S@ = f@0) ) = flwo) (@)~ fa)
z—xot T — X0 1 — X9 T—x1 Tr — X
/ <f(x1)_f($0)< / . 9
& falzo) < T fo(x1) (2)
Ainsi, les inégalitég1) et (2) nous donnenf; (zo) < f;(z1), ce qui justifie la croissance dg sur I".
On procéde de la méme maniére pgijr |

Remar ques 3:
1. f convexe surl #- f continue surI. Considérer par exemple la fonctigindéfinie suf—1, 1] par f(—1) =
f(1) =2etpourtoutr € ] — 1,1], f(x) = 22
2. f convexe surl # f dérivable sur I. Considérer par exemple la valeur absolue sur un intervalle ouvert

contenand.
[ ] [ ]

~ | 7

Théoreme 4 : Soitf : I — R une fonction continue surI et dérivable sur I°. Alors f est convexe
sur I si et seulement sif’ est croissante surl”.

démonstration: Le sens direct est assuré par le théoréme 3. En effet, puis@sedérivable sui”,
onaf; = f; = f'surl’, ce qui donne directement la croissancefdsur I°.

Démontrons alors le sens indirect. Soient zo € I tels quer; < zg etxy € |xy, zof. Il existe donc
A €]0,1[tel quexy = Az + (1 — A) z2. On applique le théoreme des accroissements finigisuo|
et]xo, x2[, de sorte que

f(xo) = fl1)
Trog — T1 ’

Jep €Jwo,x2[ | flx2) = flzo) = f'c2)(w2 — 20) & f'(c2) = W'

e €z, mol | fzo) = flo1) = fle)(zo —21) & fl(a) =
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Puisquef’ est croissante suf’ par hypothése, et; < cs, alors

flzo) = fz1) _ fla2) — flzo)

fller) < fllea) & <
To — T 362 — X

= a2 —21)(f(20 1)) < zo — 1) (f(22) — f(20))
& flxo) = f(Azr + (1 - )\)90 ) )\f(xl) (1 =) f(=2),

donc f est convexe suf. |

sur I si et seulement si la courbe représentative d¢ est au-dessus de toutes ses tangentes.

démonstration: Soitxz, € I'. L'équation de la tangente eny a f est donnée pour tout € [
pary = f'(zo)(x — zo) + f(xo). Soit alorsg(z) = f(z) — f'(x0)(x — x0) — f(xo) définie surl. g
est dérivable sul” et¢g'(z) = f'(z) — f'(zo). On remarque que(zy) = 0, et on notes la courbe
représentative d¢. On a alors les équivalences suivantes :

f est au-dessus de toutes ses tangentes

N { g < 0sur]a, x| <:>{ Va < xo, f(x) < f(x0)

g > 0sur]zo,a Vo <z, f'(20) < f()
thm 4

& f'croissante sul® & f convexe sul.

Corollaire 2 : Soit f : I — R est continue surl et de classeg? sur I". Alors f est convexe sul si
et seulement sif” est positive surl”’.

démonstration: Le résultat est évident. En effet, le théoréme 4 nous assure déjacpmeexe sul
équivaut af’ croissante sui®. Puisquef est¢? surI°, ceci équivaut encore &’ > 0 surI”. [

74.3 Applications

74.3.1 Extremums

Proposition 1 : Soientf : I —— R une fonction dérivable et convexe sull, eta € I tel que
f’(a) = 0. Alors f admet un minimum ena.

démonstration: D’aprés le corollaire 1,f est au-dessus de toutes ses tangentes. En particulier, au
pointa, on a donc

vael,  f(2)> f(a)z—a)+ fla) = f(a),

donc f admet un minimum ed [

Corollaire 1 : Soit f : I — R une fonction continue surI et dérivable surI°. Alors f est convexe

D
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74.3.2 Inégalité de convexité
Exemples

Exemple I f(x) = e® définie surR. f est%?, et f” > 0 surR, doncf est convexe. Par le corollaire 1,
appliqué en particulier au point d’abscisse nulle, on teoalors que

VazeR, fx) = f'(0)(x —0)+ f(0) & " > a + 1.

Exemple 2 g(z) = sin(x) définie suf0, 7/2]. gy esté? etg” = —sin < 0 sur|0, /2], doncg est concave.
On obtient ainsi la double-inégalité (obtenue de la géitéraconcave=- cordes< g < tangentes) :

2
Vae [O,g], %xgsin(x)gx.

Convexité avec plusieurs points

Proposition 2 : Soientf : I — R convexen > 2, (A1, %1)y..., (An,xn) € R X I tels que
Yo 1 A; = 1. Alors on a l'inégalité

f(Z Ai%) <D A f(z).

démonstration: On procede par récurrence sur I'entier> 2.
Initialisation : Pourn = 2, c’est exactement la définition donnée.

Hérédité : On suppose le résultat vrai jusqu’au rang— 1, et 'on se donné\;, x1), ..., (An, x,) €
R x I tels qued """, \; = 1. Alors

(ZM@ :ffo—zM>ﬁgyf+sz
=1 =3 $ 1=3
=y
H.R.

< (1 - Z/M) F@)+ N f(w).
i=3 i=3

Or on a aussi (d'aprés la formule vraie au rang 2) que

A1 A2
fy) L — = f@1) + —=7—
S T A T 5
(on aura pris soin de vérifier que la somme des coefficients vaut bjeet En remplacant ce
résultat dans I'inégalité obtenue par I'hypothése de récurrence, ontttdirectement au résultat
recherché.

f(z2)

Comparaison de la moyenne

Proposition 3 : Pour tousx,, ..., x, € R*, on ala double-inégalité

n

Ly T X X
n

<w1+---+wn<\/m§+---+wi.

n
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démonstration: La fonctionln est concave suR’, . On a donc

n n
1 1 r1+---+x
Zﬁln(xi) <In (Znacl> < In(Yr1-x,) <In (nn)
=1 =1
1+t
n
car exp est une bijection strictement croissante. Il ne reste plus qu'a montrexdargie inégalité, qui

est une conséquence de la convexité de la fonetien- z2. En effet,

n 2 n
(Z%) B LT T Skl NG Stk P (G Rt |
n

- : n n n n
=1 =1

car la fonction racine carrée est aussi une bijection strictement crotesan [ |



