LECON N-° 2 :
Dénombrement.

Pré-requis :

— Vocabulaire ensembliste ;

— Raisonnement par récurrence ;

— Définition : Un ensemble E est dit fini et de cardinal n, soit s’il est vide et alors n = 0, soit sin € IN* et
s'il existe une bijection de E — [[1, n]|. On dit alors que E est un n-ensemble et on écrit Card(E) = n
(ou |E| = n).

2.1 Réunions et produits d’ensembles finis

Soient n € IN* et Eq, ..., E;, n ensembles.

n

[1E:

i=1

n
Proposition 1: Si Ejy, ..., E, est une partition finie de E, alors : |E| =) |Ei| =
i=1

démonstration : Il suffit de montrer que deux ensembles A de cardinal n € NN et B de cardinal
p € IN vérifient |AUB| = |A| + |B| lorsque AN B = @. Le résultat est évident si A = @ ou B = @.
Sinon, B est en bijection avec [[1, p], donc avec [n+1,n + p], et par suite, A U B est en bijection avec
[Ln]un+1,n+p] =[1n+p]. u

Exemples :

1. Diagramme de Venn : Dans une classe, trois langues sont pratiquées. On sait que : 20 éleves
font de l'anglais, 15 de l'allemand, 18 de l'espagnol, 7 de l'anglais et de 1’allemand, 9 de
I'allemand et de 1'espagnol, 8 de I'anglais et de l'espagnol et enfin 5 pratiquent les trois
langues. Quel est le nombre d’éleves ?

Anglais

Allemand

6
Espagnol

Solution : Le nombre d'éléves est donc de 10+2+5+3+6+4+4 = 34. &
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2. Tableau de Cantor : Sur un échantillon de 100 personnes, on sait que 68 sont des hommes,
et que 43 d’entre eux sont non fumeurs. De plus, 12% de ces personnes sont des femmes

fumeuses. Combien y a-t-il de non fumeurs ? (les chiffres en rouge sont donc ceux qui sont
donnés par I'énoncé)

| Sexe / Fumeur | OUI | NON | Total |

Homme 25 43 68
Femme 12 20 32
 Total | 37 | 63 | 100 |
Solution : On en déduit qu'il y a en tout 63 personnes non fumeuses. &

3. Exercice : Excluant les lettres U, I, O et la combinaison SS, combien d’immatriculations est-
il possible de faire avec en France (depuis 2009, les plaques sont de la forme MA-314-TH)?

Solution : On a 23 possibilités pour la premiére lettre et autant pour la seconde, ce qui donne 232 = 529 possibilités. On
en enléve deux pour la bloc de gauche en raison des combinaisons SS et WW, soit 527. Pour le bloc de droite, il n'y a que
la série SS a exclure, donc 528 possibilités. Pour les chiffres, toutes les combinaisons de 001 a 999 sont tolérées, soit 999
combinaisons. En tout, il y a donc :

527 x 528 x 999 = 277 977 744

plaques possibles. Pour information, le nombre estimé de véhicules circulant en France en 2011 est de 38 millions! &

Définition 1 : Le produit cartésien de p € IN* ensembles finis est ’ensemble noté Hle E;:

r
].—[Ei =E{ X+ X Ep = {(xl,...,xp),‘v’i € [[1,p]] X € Ei}.
i=1

Théoréme 1 : On a 1’égalité suivante :

n n
[T1E|=]]IE
i=1 i=1

démonstration : Reprenons les notations de la démonstration précédente. Si A = {ay,...,a,},
B = {by,..., by} et pour tout i entre 1 et n, E; = {(a;,y),y € B}, alors A x B = [[i_; E; car les
E; sont deux a deux disjoints. Or |E;| = |B| car (a;,y) — y est une bijection de E; — B, et il en
résulte que |A X Bl =Y/ |Ei| =Y/ p=n-p=|A|-|B| |

Exemple (arbre) : On tire une boule avec remise dans une urne en contenant 4, puis on retire une
boule dans cette urne.
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%\ %\ %\ \
2 3 4 2 3 4

234E [1 2 3 4]

OnakE| =E,={1,2,3,4} et E=E; X E; = |E| = |E4| - |E2| = 16.

Exercice : Les restaurant « Math'rak » propose au choix 3 entrées, 5 plats et 4 desserts. Combien
de menus peut-on y constituer ?

Solution : Notons respectivement E, P et D les ensembles constitués des 3 entrées, 5 plats et 4 desserts. Notons encore M
I'ensemble des menus possibles. Alors |M| = |E X P x D| = |E| x |P| X |[D| =3 x 5 x 4 = 60. Ce restaurant peut donc constituer

soixante plats différents. &

2.2 Dénombrement des arrangements et permutations

Soient A et B deux ensembles finis de cardinaux respectifs n et p.

2.2.1 p-listes d’ensembles finis

Définition 2 : On appelle p-liste d’éléments de A toute liste (ay,...,a,) de p éléments de A
éventuellement répétés. L'ensemble des p-listes de A est noté AP.

Proposition 1: A? est fini, et |A?| = |A|?.

démonstration: AP =Ax - xA=T]I_ A ol Ap| = [T_, |A| = |A|P, et il en résulte que

AP est fini (parce que A I'est). |

Remarque 1 : Une p-liste d’éléments de A peut étre identifiée & une application de [1,p] — A,
par exemple i — a;.

Théoréme 2 : AB, 'ensemble des applications de B — A, est fini, et I'on a |AB| = |A|IBl.

démonstration : SiB = {by,...,b,},alors (|B| = pet) ¢ : AB — AP : f— (f(b1),..., f(bp))
est bijective, donc |AB| = |AP| = |A|P = n? = | AlBl, B
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2.2.2 Arrangements

Définition 3 : Un arrangement de p éléments de A (p € IN) est une p-liste d’éléments deux a
deux disjoints de A. On le note A, et il est fini. Par convention, A = 1.

Remarque 2 : Par suite, un tel arrangement peut s’identifier & une injection de [[1, p] dans A.

Théoréme 3 : Nous avons les égalités suivantes :

démonstration : Soit (ay,...,a,) un arrangement. I y a n choix possibles pour a1, (n — 1) pour
ay [en effet, les éléments devant étre disjoints, le choix fait pour ay ne peut plus étre pris ni pour ap ni
pour les suivants], ..., (n — p + 1) pour a,. D'oit Ay =n(n—1)--- (n—p+1). Alors si p < n, on
a bien le résultat recherché, et si p > n, l'un des facteurs est nul, donc Al = 0. |

Exemple (arbre) : Tirages successifs de deux boules d'une urne, sans remise. Quels sont les dif-
férents couples résultant de ce tirage ((1,4) signifierait que la boule n° 1 a été tirée en premier,
puis la boule n” 4) ?

A\ A %3\ /‘I\
2 3 4 1 3 4 12 4 123

41
(4 —2)!

(1,2);(1;3); (1;4); (2,1);(2;3);(2;4); (3;1);(3;2);(3;4); (4:1); (4,2); (4 3).

Solution : On a déja A2 =

= 12 couples possibles. Les voici :

Exercice : Montrer que AP = p- AZ:} + A,’Z_l.

Solution : Soit un ensemble a n éléments. On suppose que cet ensemble a déja subi un arrangement de p élément parmi n.
On souhaite alors démontrer qu'en enlevant un élément quelconque de cet ensemble, on retrouve I'arrangement déja effectué
autrement. On décide donc de retirer un élément de cet ensemble : celui qui est retiré |'est soit de 'arrangement, c’est-a-dire
I'un des p éléments parmi n (donc p possibilités) auquel cas il reste (p — 1) éléments a arranger parmi (n — 1), soit il ne |'est pas
de I'arrangement (i.e. on enléve I'un des n — p éléments non arrangés), et il reste p éléments a arranger parmi (n —1). Ces deux
possibilités étant distinctes, le cardinal de leur union est la somme des cardinaux (prop. 1), d'ou :

-1
Al = p- Ag—l + AZ—l'
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Exercice : Démontrer le théoréme 3 de maniére non ensembliste.

Solution : Soient 1, p deux entiers (avec 11 > p). On va montrer que |Af| = n(n—1)--- (n—p+1) par récurrence sur |'entier n.

Initialisation (n = 1) : La propriété est évidente.

Hérédité : Supposons que la propriété est vraie au rang n — 1 et montrons qu'elle |'est toujours au rang n. Soit E un ensemble de
cardinal n. Si p =1, alors A% est naturellement en bijection avec I'ensemble E, donc |A}1\ = n. En revanche, si p > 1, alors
on note Al (e) (pour tout e € E) I'ensemble des arrangements de p éléments de E de premier élément e. Par définition,
cet ensemble ne contient que des éléments disjoints, formant une partition de A?.

Il est aisé de constater que Af(x) est en bijection avec I'ensemble des arrangements de (p — 1) éléments de E\{e} (et

[E\{e}| = n—1), donc Al(e)| = [AP 1| "B (n—1)-- - (n=1) = (p—=1)+1) = (n—1)--- (n— p+1). Par suite,
puisque les ensembles {Aﬁ(e),e € E} forment une partition de Al la proposition 1 nous assure que

lAfl =Y AL =) (n=1) - (n—p+1) =n(n—1)- (n—p+1),

ecE ecE

indépendant de ¢

ce qui achéve notre récurrence. o

Définition 4 : Une permutation de A est un arrangement de n éléments de A. Le nombre de
permutations de A (et donc de bijections de E — E) est donc n! (c’est le cas particuliern = p
dans A}).

2.3 Dénombrement des combinaisons, coefficients binomiaux

2.3.1 Définitions et propriétés

Définition 5 : Soit E un ensemble fini de cardinal n € IN. On appelle combinaison de p € IN
éléments de E toute partie de E a p éléments. On note (Z) le nombre de combinaisons de

p éléments d’une ensemble en contenant n (il se lit « p parmi n »). Les coefficients (Z) sont
appelés coefficients binomiaux.

Remarques 3:

— & (resp. E) est la seule partie de E a 0 (resp. n) éléments, donc ({) =1 (resp. (1) =1);

- (’;}) € IN par définition;

— Si p > n, il ne peut y avoir de parties de p éléments d’un ensemble en contenant 1, donc si
p>n, (Z) =0.

n!
- pl(n—p)t

Théoréme 4 : Soient p,n € N tels que p < n. Alors (Z)

démonstration : Les nombre d’ensembles ordonnés de p éléments d’un ensemble a n éléments est
Al Orilya (;) manieres de choisir une partie a p éléments dans un ensemble a n éléments, et p!
manieres d’ordonner les éléments dans chaque parties. Par le principe multiplicatif, on a donc I'égalité
Al = p! (3), d’oit le résultat, sachant que Al; = n!/(n — p)!. [

Conséquences : (i) = (,2,) et () = %(’;j).
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2.3.2 Quelques résultats sur les coefficients binomiaux

Proposition 2 :

n n—1 n—1
Formule de Pascal : = + ( >
(P) < p ) p—1

n
Formule itérée de Pascal : Soient p < n deux entiers naturels. Alors Z (f}) = (; i 1) .

k=p

démonstration : Montrons la formule de Pascal. Soit un ensemble E a n éléments. On suppose que
I'on a « extrait » une partie a p éléments. Si 'on retire un élément {a} a E, c’est soit un élément
de la combinaison, soit non. Dans le premier cas, les p — 1 éléments restants forment une partie de
I'ensemble E\{a} de cardinal n — 1, et dans le second, ce sont les p éléments qui forment une partie de
E\{a}. Cette union étant disjointe, les cardinaux s’ajoutent pour aboutir i I'égalité demandée.

Montrons encore la formule itérée par récurrence sur I'entier n.
o Initialisation : Lorsque n = p, les deux membres valent 1 d’apres la remarque 1.

e Hérédité : Supposons la formule vraie au rang n, et montrons qu’elle I'est encore au rang n +1 :

B0-50) (7= (24 (3)- 62D

La derniere égalité étant justifiée par la formule de Pascal. |

Théoréeme 5 (formule du binéme) : Soit A un anneau, a,b € A qui commutent. Alors

n
ViEN, (at+b)'=) <Z> ak bk,
k=0

démonstration : Par récurrence sur l'entier n.
e Initialisation : Avec la convention 0° = 1, lorsque n = 0, les deux membres sont égaux a 1.

e Hérédité : Supposons la formule vraie au rang n, et montrons qu’elle est encore au rang n + 1 :
n

a+b)" = (a+b)a+b)" " (atb ) gk prk
(a+) @i+ @in) ) (7)

n n n+1 n
_ ): <Z) gLk +k2 <Z) Akl — kz (kﬁ1> gk kel +k2 (Z) gk kel

k=0
+1 i n k k+1 +1 i n k k+1
= 4" + < >ub” +p" 4 <>ab”
~— k—1 N~ k
(k=n+1) K*=1 (k=0) k=1

_ (n+1\ a1, v n n k pnbl—k n+1\ 41,0
= <o )ab +kfi<<k_1>+<k>>ab tlpr1) b

_ ril <” —kF 1) gF ik

k=0

La derniére égalité utilise la formule de Pascal pour I'addition des deux coefficients binomiaux. |



7

“pes-4 Dénombrement

Corollaire 1 : On a les égalités suivantes :

démonstration : Pour (i), on utilise le théoreme précédent avec a = 1 et b = 1. Pour (ii), on 'utilise
aveca = —1letb = 1. [ |

Remarques 5:

— Le point (i) traduit le fait que le nombre de parties d"un ensemble a 1 éléments est 2". En effet,
ce nombre est la somme des nombres de parties ayant respectivement 0, 1, ..., n éléments
(le cardinal d"une union disjointe est la somme des cardinaux), ce qui correspond bien a la
somme indiquée.

— Le point (ii) traduit le fait qu’il y a autant de parties de cardinal pair d’'un ensemble a n
éléments que de parties de cardinal impair.

— Les quatre propriétés ci-dessus peuvent servir a simplifier des calculs.

2.4 Applications

24.1 Exemples triviaux

Exercice : Soit les nombres obtenus en permutant 1, 2, 3, 4, 5 et 6.

Quel est le nombre de ces nombres ?
Rangés par ordre croissant, quel est le rang de 3621457?

Montrer qu’aucun de ces nombres n’est ni premier, ni un carré parfait.

= L=

Quelle est la somme de ces nombres ?

Solution :
1. Il y en a exactement 6! = 720.

2. Parmi ces nombres, 5! commencent par un 1, 5! par un 2, 4 X 4! commencent par 31, 32, 34 ou 35 et enfin, 3! commencent
par 361. Le nombre suivant (par ordre croissant) ne commencant pas par 361 étant 362 145, il suffit de compter le nombre
de nombres inférieurs a celui-ci : il y en a 5! + 5!+ 4 - 4! 4 3! = 342. Finalement, 362 145 est le 343¢ de ces nombres.

3. Pour tous les nombres, la somme des chiffres vaut 21, ils sont donc tous divisibles par 3 et donc non premiers. De plus,
cette somme n’est pas multiple de 9, donc aucun de ces nombres n’est un carré parfait.

4. Puisque chacun des six chiffres peut occuper les six places, il y a 5! nombres ol I'un de ces chiffres est celui des unités,
autant ol le méme chiffre est chiffre des dizaines, etc. La somme des unités est donc égale a 1 x (1+2+3+4+5+6) x5!.
La somme des dizaines est égale a 10 X (1+2+ 344+ 5+) x 5!, etc. La somme recherchée est donc finalement égale a

120(1 410+ - - - 4+ 100000) (1 +2 + - - - + 6) = 279999720

Cet exercice s'achéve donc ici. On constate que si les autorités avaient voulu mettre en place un systéme d'immatriculation
utilisant six chiffres, il aurait été tout aussi efficace que celui mis en place actuellement (voir exercice page 2). &

Exercice : Déterminer le nombre d’arrangements possibles avec les lettres de « SABRINA ».
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Solution : Il y en a 7!/2! = 2520. On divise par 2! car il y a deux lettres qui sont les mémes dans le mot « SABRINA » : c’est
le « A ». En effet, « SABRINA » = « SABRINA », bien que I'on puisse penser que dans le premier membre, le premier « A »
est le premier du mot et dans le second, le premier « A » est le dernier du mot; ces deux mots seraient donc différents, bien
que ce sont les mémes, et c'est pour cela que I'on divise par 2!. &

Exercice : 17 chevaux sont au départ d'une course. Déterminer le nombre d’arrivées possibles
pour un quarté dans 1'ordre et dans le désordre.

Solution : Dans le désordre, il s'agit de dénombrer les 4-listes de I'ensemble des 17 chevaux : A‘ll7 =17 x 16 x 15 x 14 = 57120.
Pour chaque combinaison gagnante, il y a 4! = 24 combinaisons identiques si I'on ne tient pas compte de I'ordre, soit un total
de 57120/24 = 2380 combinaisons tenant compte de |'ordre. Remarquons que 2380 = (147). O

Le Loto : Il s’agit de choisir 7 nombres parmi 49. L'ordre ne comptant pas, on dénombre le
nombre de parties de 7 éléments de I'ensemble {1,...,49} de cardinal 49 : il y a donc (%) pos-
sibilités, soit 85900 584.

Dénombrement : On tire au hasard 5 cartes d'un jeu en comptant 32. Combien de tirages sont
possibles ot I'on ait. ...

— exactement trois rois?  (3) - (¥) = 1512;

— au moins trois rois?  (3) - (%) + (7) - (¥¥) = 1540;

— deux Q et trois &2 (§) - (§) = 1568;

2.4.2 Sommes

La formule itérée de Pascal permet de déterminer des sommes de la formes Y/ ,k” pour un
certain p donné. Voyons par exemple ce que cela donne avec p = 1, puis p = 2.

g S

k=0
les premiéres egahtes étant du calcul formel, et la derniére 'application de la formule itérée de

Pascal. On en tire alors (connaissant le résultat pour p = 1) :

1& , n+1 , nn+1)(n—-1) nn+1) nn+1)2n+1)
sre=("3h)+ kzomzk s

2.4.3 Trigonométrie (linéarisation)

Exercice : Linéariser sin’(x).
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) 3
ix _ ,—ix . )
Solution : sin®(x) = (e 2: ) = —é(glx —e )3 = _é

3(eixie—bc)) — ,%(Sin(3x)73sinx)- ¢

(e3ix C @) e 4 (3) e — e—Six) _ _é(esu _ B _

2.4.4 Petit théoréeme de Fermat

Théoréme 6 : Soient p une entier naturel premier et a € Z. Alors a? = a [p].

démonstration : Puisque p est premier, alors pour tout k € {1,...,p — 1}, p divise (,’f) En effet,
)y =plp—1)--(p—k+1)/kl =k (}) =p(p—1)--- (p—k+1). Comme p est premier, il est
premier avec tout entier le précédent, donc p Ak = 1, et il vient que p ne divise pas k!. Par le théoréme
de Gauss, il s’ensuit que p divise (Z) Procédons ensuite par récurrence sur l'entier a € IN :

e Initialisation : Sia = 0, le résultat est évident.

e Hérédité : Supposons que (a —1)P =a—1 [p].

H.

=

ap:(a—l—l—l)p:i(f)(ﬂ—l)kz(a—l)p—i—l[;ﬂ] ‘a—1+1[p] =a[p].

k=0

Sia € (—IN)*, alors —a € N = (—a)? = —a [p]. Supposons alors un instant p # 2 de sorte que
la condition p premier soit équivalente a dire que p est impair. La relation de congruence précédente
devient alors —aP = —a [p| < a? = a [p]. Enfin, si p = 2, alors quelque soit a, 'entier a? — a est
pair, et donc divisible par p. |

2.4.5 Formule de Van der Monde

Proposition 3 : Pour tous entiers m, n et p tels que p < m + n, on a 1’égalité

(") =5 (1),

p . . . " (m4n
démonstration : Soit x un réel. Alors (1+x)™ (1+x)" = (14 x)"™" = ) ) xP. Or

A+2)"1+x)" = <z’m0 (711) v (Ji
0
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Par identification des coefficients de ce polyndme de degré p, on obtient finalement que pour tout entier

pei0,...,m+n},
()= 5 (0 -5 ()

i+j=p

Alphabet braille

Avec une configuration de six points disposés en rectangle et tels que chacun puisse étre en
relief ou non (au moins un en relief), on dispose de 2° — 1 = 63 signes différents pour décrire
des lettres, des chiffres, et les ponctuations de la langue francaise.

En effet, chacun des six emplacements peut étre en relief ou non, on dénombre donc les 6-listes
de 'ensemble {relief, pas relief}, soit 2° possibilités, auxquelles on retranche celle ol aucun des
emplacements ne serait en relief.

¢ = « Maths »

© 2012 par Martial LENZEN.

Aucune reproduction, méme partielle, autres que celles prévues a l'article L. 122-5 du code de la
propriété intellectuelle, ne peut étre faite sans I'autorisation expresse de 1’auteur.




