
LEÇON N̊ 6 :

Loi de Poisson, loi normale.

Pré-requis :
– Probabilités : définition, calculs et probabilités conditionnelles ;
– Loi binomiale (cf. leçon no 5) ;
– Notion de variables aléatoires discrètes et continues (cf. leçons no 4 et 7), et propriétés associées : espé-

rance, variance ;
– Indépendance de variables aléatoires : X ⊥ Y ⇔ P(X ∩ Y) = P(X) P(Y) ;
– Développements limités.

6.1 Loi de Poisson

6.1.1 Définition

Cette loi a été découverte au début du XIXe siècle par Siméon-Denis Poisson. Elle s’applique
généralement aux phénomènes accidentels où la probabilité p est très faible, ou aux phéno-
mènes sans mémoire (pannes de machines, accidents d’avions, fautes dans un texte, etc.). Dans
certaines conditions, elle peut également être définie comme limite d’une loi binomiale (notam-
ment lorsque n > 50 et np 6 5 :

Soient n ∈ N
∗, k ∈ {0, . . . , n} et p ∈ [0, 1]. Les calculs avec une loi binomiale deviennent ra-

pidement compliqués dès que n est très grand et p très petit. On cherche alors à approximer
P(X = k) par quelque chose de plus simple. La question est alors : en posant λ = np (constante),
est-ce que la quantité P(X = k) = (n

k) pk (1 − p)n−k a-t-elle une limite lorsque n → ∞ ?
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Par continuité de la fonction exponentielle, on en déduit que :

lim
n→∞

(
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)
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exp(−λ) = e−λ λk

k!
.
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Exercice : La probabilité pour une ampoule électrique « grille » à son premier allumage est de
0, 01. Sur un groupe de 100 ampoules, quelle est la probabilité d’observer 0 ampoule qui grille ?
1 ? plus de 2 ?

Solution : Pour une ampoule, il s’agit d’une loi de Bernoulli, où le succès est assimilé au fait qu’une ampoule grille avec la
probabilité p = 0, 01. Le groupe de 100 ampoules suit une une loi binomiale L (X) = B(100; 0, 01). Puisque n = 100 > 50 et
np = 1 6 5, on peut raisonnablement approcher cette loi par une loi de Poisson de paramètre 1. Par suite,

⋄ P(X = 0) = e−1 ·10

0! ≈ 0, 3679 ;

⋄ P(X = 1) = e−1 ·11

1! ≈ 0, 3679 ;

⋄ P(X > 2) = 1 − P(X 6 2) = 1 − P(X = 0) − P(X = 1) − P(X = 2) ≈ 1 − 2 · 0, 3679 − e−1 ·12

2! ≈ 0, 0803.

Remarquons tout de même qu’il y a 36% de chances pour qu’aucune des 100 ampoules ne grille à la première utilisation ! ♦

Définition 1 : On dit qu’une variable aléatoire réelle X suit une loi de Poisson de paramètre
λ > 0 si sa loi de probabilité est donnée par :

∀ i ∈ N, P(X = i) = e−λ λi

i!
.

démonstration : Vérifions que la somme des toutes les probabilités possibles vaut bien 1, d’après le
principe des probabilités totales :

∑
i>0

P(X = i) = ∑
i>0

e−λλi

i!
= e−λ ∑

i>0

λi

i!
︸ ︷︷ ︸

= eλ

= e−λ eλ = 1.

C’est le résultat voulu. �

Exercice : Sur une autoroute, il y a en moyenne deux accidents par semaine. Le week-end de
Pâques, il y en a eu cinq. Quelle était la probabilité que cela n’arrive ?

Solution : La loi X du nombre d’accidents sur cette route suit une loi de Poisson de paramètre 2. Par suite,

P(X = 5) =
e−2 · 25

5!
≈ 0, 0361,

soit environ 3, 6%. ♦

6.1.2 Espérance et variance

Théorème 1 : Soit X une variable aléatoire réelle suivant une loi de Poisson de paramètre
λ > 0. Alors :

E(X) = Var(X) = λ.

démonstration : Rappelons que ex =
+∞

∑
n=0

xn

n!
(♭) et ∀ i ∈ N, P(X = i) = e−λ λi

i!
. Dans ce cas :
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Calcul de l’espérance :

E(X) =
+∞
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Calcul de la variance :

Var(X) = E(X2) − E2(X)
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(♭)
= λ e−λ eλ + λ2 e−λ eλ − λ2

= λ + λ2 − λ2 = λ.
Ces égalités sont donc démontrées. �

6.2 Loi normale

6.2.1 Définition, espérance et variance

Définition 2 : On dit qu’une variable aléatoire réelle X suit une loi normale d’espérance µ et
d’écart-type σ > 0 (donc de variance σ2) si elle admet pour densité de probabilité la fonction
f (x) définie pour tout réel x par :

fX(x) =
1

σ
√

2π
exp

[

−1

2

(
x − µ

σ

)2
]

.

On note L (X) = N (µ, σ2).

démonstration (espérance, variance) : Nous allons montrer que l’espérance d’une variable qui
suit une loi normale est égale à µ et que sa variance est égale à σ2. Par définition, l’espérance égale à

E(X) =
1

σ
√

2π

∫ +∞

−∞
x exp

[
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2

(
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σ

)2
]

dx.

Pour calculer cette intégrale, faisons le changement de variables u = x−µ
σ (impliquant du = dx

σ ),
classique pour les calculs sur la loi normale. Il vient :

E(X) =
1√
2π

∫ +∞

−∞
(µ + σu) exp

[

−u2

2

]

du

=
µ√
2π

∫ +∞

−∞
exp

[

−u2

2

]

du +
σ√
2π

∫ +∞

−∞
u exp

[

−u2

2

]

du.

La seconde intégrale est nulle (en effet, il s’agit de l’intégrale d’une fonction impaire). Quant à

la première, elle est égale à
√

2π, ce qui se montre en posant I =
∫ +∞

−∞
exp

[
− u2

2

]
du et donc
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I2 =
∫ +∞

−∞

∫ +∞

−∞
exp

[
− 1

2(x2 + y2)
]

dx dy et en intégrant en coordonnées polaires. On trouve alors
finalement que E(X) = µ.

De la même façon :

E
(
(X − µ)2

)
=

1

σ
√
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2

(
x − µ

σ

)2
]

dx

deviendra, après changement de variables ci-dessus :

E
(
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)
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σ2

√
2π

∫ +∞
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[
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2
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En intégrant par parties, on trouve directement que

E
(
(X − µ)2

)
= σ2.

Ceci achève notre démonstration. �

Remarques 1 :

⋄ La densité fX est un "outil" qui nous permettra de calculer les probabilité par intégrale pour des va-

riables aléatoires non discrètes. L’une de ses principales propriétés est :
∫ +∞

−∞
fX(x) dx = 1.

⋄ Une variable aléatoire est dite discrète lorsqu’elle ne prend que des valeurs discontinues dans un
intervalle donné, alors qu’elle est dite continue si elle peut prendre toutes les valeurs dans un intervalle
donné. En général, les variables aléatoires issues de dénombrement (nombre d’accidents de la route,
nombre de mutations de professeurs dans une académie, . . .) sont discrètes alors que celles issues de
mesures (choix aléatoire d’un nombre entre 0 et 1, taux de glucose dans le sang, . . .) sont continues.

6.2.2 Représentation graphique et propriétés

Représentation graphique de la fonction de réparti-
tion de la loi normale N(µ, σ2) :

FX(t) = P(X 6 t) =
∫ t

−∞
fX(x) dx.

t
µ

P(X 6 t)

Remarques 2 : La droite d’équation x = µ est axe de symétrie de cette « courbe en cloche », et les points
d’inflexion sont situés à une distance σ de cet axe de symétrie. Voici encore une belle illustration de l’an-
cien billet allemand de 10 DM sur lequel figure Gauss et sa fameuse courbe :
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Proposition 1 : La variable aléatoire Y =
X − µ

σ
suit la loi normale centrée réduite N (0, 1).

démonstration : En effectuant toujours le même changement de variables u = x−µ
σ , on a pour tout

réel t :

P(Y 6 t) =
∫ t

−∞

1

σ
√

2π
exp

[

−1

2

(
x − µ

σ

)2
]

dx =
∫ t

−∞

1√
2π

exp

[

−u2

2

]

du.

La densité de la variable aléatoire Y est donc la fonction

fY(u) =
1√
2π

exp

[

−u2

2

]

,

qui correspond à celle de la loi normale centrée réduite N (0, 1). �

6.3 Propriétés utilisant l’indépendance

6.3.1 Principe

Soient X, Y, Z trois variables aléatoires réelles telles que Z = X + Y. Alors pour tout k ∈ N,

P(Z = k) = P(X + Y = k)

= P ((X = 0 ∩ Y = k) ⊔ (X = 1 ∩ Y = k − 1) ⊔ · · · ⊔ (X = k ∩ Y = 0))

= P(X = 0, Y = k) + P(X = 1, Y = k − 1) + · · · + P(X = k, Y = 0) (car disjoints)

=
k

∑
i=0

P(X = i, Y = k − i).



6

Loi de Poisson, loi normale

De plus, si les deux variables aléatoires sont indépendantes, alors on a finalement :

∀ k ∈ N, P(X + Y = k) =
k

∑
i=0

P(X = i) P(Y = k − i). (♯)

6.3.2 Loi de Poisson

Proposition 2 : Si X et Y sont deux variables aléatoires indépendantes suivant des lois de Poisson de

paramètres respectifs λ et µ, alors L (X + Y) = P(λ + µ).

démonstration : Soit k ∈ N. Alors d’après l’égalité (♯) ci-dessus, on a :

P(X + Y = k) =
k

∑
i=0

P(X = i) P(Y = k − i) =
k

∑
i=0

e−λ λi

i!
e−µ µk−i

(k − i)!

= e−(λ+µ)
k

∑
i=0

λi

i!

µk−i

(k − i)!
= e−(λ+µ)

k

∑
i=0

1

k!

k!

i! (k − i)!
λi µk−i

=
e−(λ+µ)

k!

k

∑
i=0

(
k

i

)

λi µk−i =
e−(λ+µ)

k!
(λ + µ)k.

�

6.3.3 Loi normale

Proposition 3 : Si X et Y sont deux variables aléatoires indépendantes de loi respective N (µ1, σ2
1) et

N (µ2, σ2
2), alors la variable aléatoire L (X + Y) = N

(

µ1 + µ2,
√

σ2
1 + σ2

2

)

.

démonstration : Cette démonstration utilise le fait que la densité de probabilité de la somme de deux

variables aléatoires indépendantes X et Y (ayant chacune une densité fX et fY) est donné par le produit

de convolution fX+Y(t) = ( fX ∗ fY)(t) =
∫ +∞

−∞
fX(x) fY(t − x) dx. �

6.4 Convergence

6.4.1 Théorème central limit

Théorème 2 (théorème central limit) : Soit Sn la variable aléatoire résultat de la somme de n ∈ N
∗

variables aléatoires indépendantes de même loi, chacune d’espérance µ et de variance σ2, et Zn la

variable aléatoire définie par

Zn =
Sn − nµ

σ
√

n
.

Alors on a L (Zn) = N (0, 1).

démonstration : Dans le cadre de cette leçon, nous admettrons ce théorème. Il peut cependant être

démontré assez facilement en utilisant les fonctions caractéristiques. �
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6.4.2 Loi de Poisson

Théorème 3 : Soit X une variable aléatoire telle que L (X) = P(λ). Alors, pour tout entier k, on a

P(X = k) ≈ 1√
λ

√
2π

exp

[

−1

2

(
k − λ√

λ

)2
]

quand λ → +∞,

avec E(X) = λ et V(X) = λ.

démonstration : Cette démonstration est laissée au lecteur en exercice. �

Remarques 3 : L’approximation est valable dès que λ > 20.

c© 2012 par Martial LENZEN.
Aucune reproduction, même partielle, autres que celles prévues à l’article L. 122-5 du code de la

propriété intellectuelle, ne peut être faite sans l’autorisation expresse de l’auteur.


